MIT Demonstrates Fully 3D Printed, Active Electronic Components

MIT Demonstrates Fully 3D Printed, Active Electronic Components

One can 3D print with conductive filament, and therefore plausibly create passive components like resistors. But what about active components, which typically require semiconductors? Researchers at MIT demonstrate working concepts for a resettable fuse and logic gates, completely 3D printed and semiconductor-free.


Now just to be absolutely clear — these are still just proofs of concept. To say they are big and perform poorly compared to their semiconductor equivalents would be an understatement. But they do work, and they are 100% 3D printed active electronic components, using commercially-available filament.


How does one make a working resettable fuse and transistor out of such stuff? By harnessing thermal expansion, essentially.



The conductive filament the researchers used is Electrifi by Multi3D, which is PLA combined with copper micro-particles. A segment printed in this filament is normally very conductive due to the densely-packed particles, but as temperature increases (beginning around 40° C) the polymer begins to soften and undergoes thermal expansion. This expansion separates the copper particles, causing a dramatic increase in electrical resistance as electrical pathways are disrupted. That’s pretty neat, but what really ties it together is that this behavior is self-resetting, and reversible. As long as the PLA isn’t straight up melted (that is to say, avoids going over about 150° C) then as the material cools it contracts and restores the conductive pathways to their original low-resistance state. Neat!


So where does the heat required come from? Simply passing enough current through the junction will do the job. By carefully controlling the size and shape of traces (something even hobbyist filament-based 3D printers are very good at) this effect c ..

Support the originator by clicking the read the rest link below.