NIST Selects HQC as Fifth Algorithm for Post-Quantum Encryption

NIST Selects HQC as Fifth Algorithm for Post-Quantum Encryption

Credit: J. Wang/NIST and Shutterstock


Last year, NIST standardized a set of encryption algorithms that can keep data secure from a cyberattack by a future quantum computer. Now, NIST has selected a backup algorithm that can provide a second line of defense for the task of general encryption, which safeguards internet traffic and stored data alike.


Encryption protects sensitive electronic information, including internet traffic and medical and financial records, as well as corporate and national security secrets. But a sufficiently powerful quantum computer, if one is ever built, would be able to break that defense. NIST has been working for more than eight years on encryption algorithms that even a quantum computer cannot break.


Last year, NIST published an encryption standard based on a quantum-resistant algorithm called ML-KEM. The new algorithm, called HQC, will serve as a backup defense in case quantum computers are someday able to crack ML-KEM. Both these algorithms are designed to protect stored information as well as data that travels across public networks.

HQC is not intended to take the place of ML-KEM, which will remain the recommended choice for general encryption, said Dustin Moody, a mathematician who heads NIST’s Post-Quantum Cryptography project. 


“Organizations should continue to migrate their encryption systems to the standards we finalized in 2024,” he said. “We are announcing the selection of HQC because we want to have a backup standard that is based on a different math approach than ML-KEM. As we advance our understanding of future quantum computers and adapt to ..

Support the originator by clicking the read the rest link below.