Esther Baumann works in the lab where a team of researchers has developed an improved version of a laser-based measurement technique called dual-comb spectroscopy.
Credit: R.Jacobson/NIST
Scientists at the National Institute of Standards and Technology (NIST) have developed a new laser-based technique that could dramatically improve our ability to analyze a variety of materials and gases, including greenhouse gases. This new method, called “free-form dual-comb spectroscopy,” offers a faster, more flexible and more sensitive way to analyze substances in the air and other materials.
In this specific study, published in Nature Photonics, researchers demonstrated that their laboratory-based system could detect a single gas, in this case the potent greenhouse gas methane, with 22 times higher sensitivity than a traditional dual-comb system. This increased sensitivity could one day help identify small leaks or emissions that might otherwise go unnoticed, potentially aiding in efforts to combat climate change.
Technological Advancements
Spectroscopy is a sophisticated technique that allows scientists to identify and measure different materials by observing how they interact with light. Just as a prism separates white light into a rainbow of colors, spectroscopy separates the light coming from or passing through a substance, revealing its unique “fingerprint” and providing valuable information about its properties and composition.
The NIST researchers have created an improved version of a laser-based measurement technique called dual-comb spectroscopy. Dual-comb spectroscopy is a particularly high-resolution form of spectroscopy that allows many colors of light to be examined at the same time and in fine detail.
The new laser measurement technique improves on older methods by allowing scientists to control the timing of laser pulses with incredible precision. This precise control lets them focus on ..
Support the originator by clicking the read the rest link below.