Tuning into Atomic Radio: Quantum Technique Unlocks Laser-Based Radio Reception

Tuning into Atomic Radio: Quantum Technique Unlocks Laser-Based Radio Reception

The basic technology of radio hasn’t changed much since an Italian marquis first blasted telegraph messages across the Atlantic using a souped-up spark plug and a couple of coils of wire. Then as now, receiving radio waves relies on antennas of just the right shape and size to use the energy in the radio waves to induce a current that can be amplified, filtered, and demodulated, and changed into an audio waveform.


That basic equation may be set to change soon, though, as direct receivers made from an exotic phase of matter are developed and commercialized. Atomic radio, which does not rely on the trappings of traditional radio receivers, is poised to open a new window on the RF spectrum, one that is less subject to interference, takes up less space, and has much broader bandwidth than current receiver technologies. And surprisingly, it relies on just a small cloud of gas and a couple of lasers to work.



Quantum Music using Rydberg Atoms


The term atomic radio seems a bit confusing at first. After all, aren’t all radios made from atoms? But in the context of differentiating traditional radio technologies from the newer approach, use of the term atomic makes sense. Atomic radio relies on Rydberg atoms, which are atoms of elements such as cesium and rubidium that have had their outer electrons coaxed into much, much higher quantum states than normal matter, using either laser light at exactly the right wavelength or other electromagnetic methods. The electrons are so far from the nucleus in Rydberg atoms that they are barely held in orbit, the orbits are nearly circular, and the atom approaches macroscopic size.


Beca ..

Support the originator by clicking the read the rest link below.