Your Smart Toaster Can’t Hold a Candle to the Apollo Computer

Your Smart Toaster Can’t Hold a Candle to the Apollo Computer

Without the computers on board the Apollo spacecraft, there would have been no moon landing, no triumphant first step, no high-water mark for human space travel. A pilot could never have navigated the way to the moon, as if a spaceship were simply a more powerful airplane. The calculations required to make in-flight adjustments and the complexity of the thrust controls outstripped human capacities.


The Apollo Guidance Computer, in both its guises—one on board the core spacecraft, and the other on the lunar module—was a triumph of engineering. Computers had been the size of rooms and filled with vacuum tubes, and if the Apollo computer, at 70 pounds, was not exactly miniature yet, it began “the transition between people bragging about how big their computers are … and bragging about how small their computers are,” the MIT aerospace and computing historian David Mindell once joked in a lecture.


The trends that this computer foretold kept spinning out, exponentially, for decades: From big to small, from vacuum tubes to silicon, from hardware to software. Now, if you compare the computing power that NASA used with any common device, from a watch to a greeting card to a microwave, it induces technological vertigo. Michio Kaku, the physicist and popular author, put it like this: “Today, your cell phone has more computer power than all of NASA back in 1969, when it placed two astronauts on the moon.”


But these just-so sayings obscure the real power of the Apollo computer. Of course, any contemporary device has vastly more raw computational ability than the early machine, but the Apollo computer was remarkably capable, reliable, and up to the task it was given. You could not ac ..

Support the originator by clicking the read the rest link below.